Skip to Content
DataCards 2.2.4 is released 🎉
DocumentationCardsInput CardsGrid Card

Grid Card

Card type: agGrid

Data type of variable: DataFrame

Basic grid card

The grid card displays a DataFrame in an interactive, editable grid format. It supports sorting, filtering, and editing of the data. Editing the data will update the DataFrame stored in the connected DataCards variable.

In addition to the common parameters and the input card parameters, the agGrid card has the following configuration options:

NameTypeRequiredDescription
col_defslistNoColumn definitions that specify how each column should be displayed and behave. See ag-grid documentation  for more details.

Examples

Basic grid card

import polars as pl from datetime import datetime # Create a DataFrame df = pl.DataFrame({ "date": [ datetime(2024, 1, 1, 8, 30), datetime(2024, 1, 2, 9, 15), datetime(2024, 1, 3, 7, 45), ], "city": ["London", "Paris", "Berlin"], "temperature_c": [13.3, 12.3, 4.2], "air_quality_index": [67, 54, 43], "is_raining": [False, False, True] }) # Publish the DataFrame datacards.publish.variable("my_grid_data", df) # Define column display options col_defs = [ { "field": "date", "headerName": "Date" }, { "field": "city", "headerName": "City" }, { "field": "temperature_c", "headerName": "Temp (°C)" }, { "field": "air_quality_index", "headerName": "Air Quality Index" }, { "field": "is_raining", "headerName": "Raining" } ] # Publish the grid card datacards.publish.card( type='agGrid', label='Weather Data', variable_key='my_grid_data', col_defs=col_defs, logic_view_size=(11, 5) )
Basic grid card
Last updated on